Abstract:
A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at $\sqrt{s}$ = 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 fb$^{-1}$. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude: string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; $\mathrm{W}^{\prime}$ bosons below 1.9 TeV or between 2.0 and 2.2 TeV; $\mathrm{Z}^{\prime}$ bosons below 1.7 TeV; and Randall--Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.
|