Year	Trigger	HLT condition	L1 condition
2016			
	$\mu \tau_{\rm h}$	$p_{\mathrm{T}}^{\mu} > 19 \mathrm{GeV}$ (isolated) $p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 20 \mathrm{GeV}$ (unseeded)	$p_{\mathrm{T}}^{\mu} > 18\mathrm{GeV}$
	$e au_h$	$p_{\mathrm{T}}^{\mathrm{e}} > 24\mathrm{GeV}$, $p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 20\mathrm{GeV}$ (unseeded) $^{(1)}$	$p_{\mathrm{T}}^{\mathrm{e}} > 22\mathrm{GeV}$
		$p_{\mathrm{T}}^{\mathrm{e}} > 24\mathrm{GeV}$, $p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 20\mathrm{GeV}$ (seeded & nonisolated) $^{(2)}$	$p_{\mathrm{T}_{-}}^{\mathrm{e}} > 22\mathrm{GeV}$,
			$p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 20\mathrm{GeV}$
		$p_{\rm T}^{\rm e} > 24 {\rm GeV}$, $p_{\rm T}^{\tau_{\rm h}} > 30 {\rm GeV}$ (seeded & isolated) ⁽³⁾	$p_{\mathrm{T}}^{\mathrm{e}} > 22 \mathrm{GeV}$,
		•	$p_{\rm T}^{\tau_{\rm h}} > 26{ m GeV}$
	$ au_{ m h} au_{ m h}$	$p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 35\mathrm{GeV}$ (seeded & isolated)	$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 28$ –36 GeV
	$\tau_{\rm h} + p_{\rm T}^{\rm miss}$	$p_{\rm T}^{ m miss} > 90{ m GeV}$, $p_{ m T}^{ au_{ m h}} > 50{ m GeV}$, $p_{ m T}^{h^\pm} > 30{ m GeV}$ (unseeded)	$p_{\rm T}^{\rm miss} > 80{\text -}100{ m GeV}$
	Single $\tau_{\rm h}$	$p_{\rm T}^{\tau_{\rm h}} > 140{ m GeV}, p_{\rm T}^{h^\pm} > 50{ m GeV} \ ({ m seeded})$	$p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 120\mathrm{GeV}$
	O II		, 1
2017 & 2018			
	$\mu au_{ m h}$	$p_{\mathrm{T}}^{\mu} > 20\mathrm{GeV}$ (isolated), $p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 27\mathrm{GeV}$ (seeded & nonisolated)	$p_{\mathrm{T}}^{\mu} > 18\mathrm{GeV}$,
			$p_{\rm T}^{\tau_{\rm h}} > 24/26{ m GeV}$
	$e au_h$	$p_{\mathrm{T}}^{\mathrm{e}} > 24\mathrm{GeV}$, $p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30\mathrm{GeV}$ (seeded & isolated)	$p_{\rm T}^{\rm e} > 22/24{ m GeV}$,
			$p_{\rm T}^{\tau_{\rm h}} > 26/27{\rm GeV}$
	$ au_{ m h} au_{ m h}$	$p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 35\mathrm{GeV}$ (seeded & isolated)	$p_{\rm T}^{{ au_{ m h}}} > 32{}36{ m GeV}$
	$\tau_{\rm h} + p_{\rm T}^{\rm miss}$	$p_{\rm T}^{\rm miss} > 100 {\rm GeV}, p_{\rm T}^{\tau_{\rm h}} > 50 {\rm GeV}, p_{\rm T}^{h^{\pm}} > 30 {\rm GeV} ({\rm seeded})$	$p_{\rm T}^{\rm miss} > 80{\text{-}}110{\rm GeV},$
	11 / 1		$p_{\rm T}^{\tau_{\rm h}} > 40{ m GeV}$
	Single $\tau_{\rm h}$	$p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 180\mathrm{GeV}$, $p_{\mathrm{T}}^{h^{\pm}} > 50\mathrm{GeV}$ (seeded)	$p_{\rm T}^{\tau_{\rm h}} > 120130{\rm GeV}$