Log-normal	lnN	kappa	$\kappa^{ u}$	$\mathcal{N}(y;\nu,1)$	v = y = 0
Asymmetric log-normal	lnN	kappaDown, kappaUp	$\left(\kappa^{\mathrm{Down}}\right)^{-\nu}$ if $\nu < -0.5$, $\left(\kappa^{\mathrm{Up}}\right)^{\nu}$ if $\nu > 0.5$, $\mathrm{e}^{\nu K\left(\kappa^{\mathrm{Down}},\kappa^{\mathrm{Up}},\nu\right)}$ otherwise.*	$\mathcal{N}(y; \nu, 1)$	v = y = 0
Log-uniform	lnU	kappa	$\kappa^{ u}$	$\mathcal{U}\left(y,1/\kappa,\kappa\right)$	$\nu = y = \frac{1}{2} \left(\kappa + 1/\kappa \right)$
Gamma	gmN	N,alpha [†]	ν/N	$\mathcal{P}(y; \nu)$	$\nu = N + 1, y = N^{\ddagger}$
rst and second deriv	atives are con		$^{\mathrm{Jp}}\kappa^{\mathrm{Down}}$) $\left(48\nu^{5}-40\nu^{3}+15\nu\right)$] er ues of ν , and reduces to a log-norm.		

Multiplicative factor, f(v)

Default values

p(y; v)

Inputs

Directive

as defined in Ref. [20].

Uncertainty type

^TThe rate value for the affected process must be equal to $N\alpha$. [‡]The default value for the nuisance parameter is set to the mean of a gamma distribution with parameters $\kappa = N + 1$, $\lambda = 1$,