CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-SUS-24-002
Search for light pseudoscalar bosons produced in Higgs boson decays in the 4$ \tau $ and 2$ \mu $ 2$ \tau $ final states in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Abstract: A search for a pair of light pseudoscalar bosons ($ \mathrm{a}_1 $) produced from the decay of the 125 GeV Higgs boson (H) is presented. The analysis examines decay modes where one $ \mathrm{a}_1 $ decays into a pair of tau leptons, and the other decays into either another pair of tau leptons or a pair of muons. The $ \mathrm{a}_1 $ mass probed in this study ranges from 4 to 15 GeV. The data sample used was recorded by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponds to an integrated luminosity of 138 fb$ ^{-1} $. The study uses the 2$ \mu$2$\tau $ and 4$ \tau $ channels in combination to constrain the product of the Higgs boson production cross section and the branching fraction to the 4$ \tau $ final state, $ \sigma (\mathrm{pp}\to \text{H}+\text{X} ) \mathcal{B}(\text{H}\to\text{a}_{1}\text{a}_{1})\mathcal{B}^2(\text{a}_{1}\to\tau\tau) $. This methodology takes advantage of the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. Model-independent upper limits at 95% confidence level (CL) on $ \sigma (\mathrm{pp}\to \text{H}+\text{X}) \mathcal{B}(\text{H}\to\text{a}_{1}\text{a}_{1})\mathcal{B}^2(\text{a}_{1}\to\tau\tau) $, relative to the standard model Higgs boson production cross section $ \sigma_{\text{SM}} $, are set. The observed (expected) upper limits range between 0.007 (0.011) and 0.079 (0.066) across the mass range considered. Exclusion limits at 95% on $ \sigma (\mathrm{pp}\to \text{H}+\text{X}) \mathcal{B}(\text{H}\to\text{a}_{1}\text{a}_{1}) $, relative to $ \sigma_{\text{SM}} $, are derived for various Two Higgs Doublet Model + Singlet scenarios.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Illustration of the signal topology, in which the H boson decays into two $ \mathrm{a}_1 $ bosons, where one $ \mathrm{a}_1 $ boson decays into a pair of tau leptons, while the other decays into a pair of muons or a pair of tau leptons. The analyzed final state consists of one muon and an oppositely charged track in each $ \mathrm{a}_1 $ decay.

png pdf
Figure 2:
Binning of the 2D ($ m_1,m_2 $) distribution.

png pdf
Figure 3:
The observed invariant mass distribution, normalized to unity, of the first muon and the softest (left) or hardest (right) accompanying ``signal'' track for different isolation requirements imposed on the second muon: one ``isolation'' track ($ N_\text{iso,2}= $ 1; circles) or two to three ``isolation'' tracks ($ N_\text{iso,2} = 2, $ 3).

png pdf
Figure 3-a:
The observed invariant mass distribution, normalized to unity, of the first muon and the softest (left) or hardest (right) accompanying ``signal'' track for different isolation requirements imposed on the second muon: one ``isolation'' track ($ N_\text{iso,2}= $ 1; circles) or two to three ``isolation'' tracks ($ N_\text{iso,2} = 2, $ 3).

png pdf
Figure 3-b:
The observed invariant mass distribution, normalized to unity, of the first muon and the softest (left) or hardest (right) accompanying ``signal'' track for different isolation requirements imposed on the second muon: one ``isolation'' track ($ N_\text{iso,2}= $ 1; circles) or two to three ``isolation'' tracks ($ N_\text{iso,2} = 2, $ 3).

png pdf
Figure 4:
Normalized invariant mass distribution of the muon-track system for events passing the signal selection. Observed events are shown as black points with error bars. The background model in blue is derived from the $ N_{23} $ control region. Also shown are normalized distributions from signal simulations for four mass hypotheses, $ m_{\mathrm{a}_1} $= 5, 8, 12, and 15 GeV (dashed histograms). Signal distributions include both the 2$ \mu$2$\tau $ and 4$ \tau $ contributions. Each event contributes two entries, corresponding to the two muon-track systems in each event that pass the selection. The lower panel shows the ratio of observed to expected background events in each bin. The grey shaded area represents the uncertainty of the background model.

png pdf
Figure 5:
The correlation factors $ C(i,j)^{\text{CR}}_{\text{data}} $ with statistical uncertainties.

png pdf
Figure 6:
The correlation factors $ C(i,j)^{\text{SR}}_{\text{MC}} $ (upper) and $ C(i,j)^{\text{CR}}_{\text{MC}} $ (lower) with statistical uncertainties.

png pdf
Figure 6-a:
The correlation factors $ C(i,j)^{\text{SR}}_{\text{MC}} $ (upper) and $ C(i,j)^{\text{CR}}_{\text{MC}} $ (lower) with statistical uncertainties.

png pdf
Figure 6-b:
The correlation factors $ C(i,j)^{\text{SR}}_{\text{MC}} $ (upper) and $ C(i,j)^{\text{CR}}_{\text{MC}} $ (lower) with statistical uncertainties.

png pdf
Figure 7:
The signal $ f_\text{2D}(i,j) $ templates for mass hypothesis $ m_{\mathrm{a}_1}= $ 5 GeV (upper left), 8 GeV (upper right), 12 GeV (lower left) and 15 GeV (lower right). The $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 2\mu 2\tau $ (blue histogram) and $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 4\tau $ (red histogram) contributions are shown. The distributions are normalized assuming SM H production cross section and $ {\mathcal{B}} (\mathrm{H}\to\mathrm{a}_1\mathrm{a}_1){\mathcal{B}}^{2}(\mathrm{a}_1\to \tau\tau) $ = 0.05. The bin notation follows that of Fig. 2.

png pdf
Figure 7-a:
The signal $ f_\text{2D}(i,j) $ templates for mass hypothesis $ m_{\mathrm{a}_1}= $ 5 GeV (upper left), 8 GeV (upper right), 12 GeV (lower left) and 15 GeV (lower right). The $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 2\mu 2\tau $ (blue histogram) and $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 4\tau $ (red histogram) contributions are shown. The distributions are normalized assuming SM H production cross section and $ {\mathcal{B}} (\mathrm{H}\to\mathrm{a}_1\mathrm{a}_1){\mathcal{B}}^{2}(\mathrm{a}_1\to \tau\tau) $ = 0.05. The bin notation follows that of Fig. 2.

png pdf
Figure 7-b:
The signal $ f_\text{2D}(i,j) $ templates for mass hypothesis $ m_{\mathrm{a}_1}= $ 5 GeV (upper left), 8 GeV (upper right), 12 GeV (lower left) and 15 GeV (lower right). The $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 2\mu 2\tau $ (blue histogram) and $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 4\tau $ (red histogram) contributions are shown. The distributions are normalized assuming SM H production cross section and $ {\mathcal{B}} (\mathrm{H}\to\mathrm{a}_1\mathrm{a}_1){\mathcal{B}}^{2}(\mathrm{a}_1\to \tau\tau) $ = 0.05. The bin notation follows that of Fig. 2.

png pdf
Figure 7-c:
The signal $ f_\text{2D}(i,j) $ templates for mass hypothesis $ m_{\mathrm{a}_1}= $ 5 GeV (upper left), 8 GeV (upper right), 12 GeV (lower left) and 15 GeV (lower right). The $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 2\mu 2\tau $ (blue histogram) and $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 4\tau $ (red histogram) contributions are shown. The distributions are normalized assuming SM H production cross section and $ {\mathcal{B}} (\mathrm{H}\to\mathrm{a}_1\mathrm{a}_1){\mathcal{B}}^{2}(\mathrm{a}_1\to \tau\tau) $ = 0.05. The bin notation follows that of Fig. 2.

png pdf
Figure 7-d:
The signal $ f_\text{2D}(i,j) $ templates for mass hypothesis $ m_{\mathrm{a}_1}= $ 5 GeV (upper left), 8 GeV (upper right), 12 GeV (lower left) and 15 GeV (lower right). The $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 2\mu 2\tau $ (blue histogram) and $ \mathrm{H}\to\mathrm{a}_1\mathrm{a}_1\to 4\tau $ (red histogram) contributions are shown. The distributions are normalized assuming SM H production cross section and $ {\mathcal{B}} (\mathrm{H}\to\mathrm{a}_1\mathrm{a}_1){\mathcal{B}}^{2}(\mathrm{a}_1\to \tau\tau) $ = 0.05. The bin notation follows that of Fig. 2.

png pdf
Figure 8:
The ($ m_1,m_2 $) in one-row distribution used to extract the signal. The observed number of events is represented by data points with error bars. The background with its uncertainty is shown as the blue histogram with the shaded error band. The normalization for the background is obtained by fitting the observed data under the background-only hypothesis. Signal expectations for the 4$ \tau $ and 2$ \mu$2$\tau $ final states are shown as dashed histograms for the mass hypotheses $ m_{\mathrm{a}_1} $= 5, 8, 12, and 15 GeV. The relative normalization of the 4$ \tau $ and 2$ \mu$2$\tau $ final states are given by Eq. (1) as explained in Section 7. The signal normalization is computed assuming that the H boson is produced in pp collisions with a rate predicted by the SM and decays into $ \mathrm{a}_1 \mathrm{a}_1 \to 4\tau $ final state with the branching fraction of 5%. The lower plot shows the ratio of the observed data events to the expected background yield in each bin of the ($ m_1,m_2 $) distribution.

png pdf
Figure 9:
The observed and expected upper limits at 95% confidence level on the product of the signal cross section and the branching fraction $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) {\mathcal{B}}^{2} (\mathrm{a}_1 \to \tau \tau) $, relative to the inclusive Higgs boson production cross section $ \sigma_\text{SM} $ predicted in the SM. The green and yellow bands indicate the regions containing 68% and 95% of the distribution of limits expected under the background-only hypothesis.

png pdf
Figure 10:
The observed and expected upper limits at 95% CLs on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ m_{\mathrm{a}_1} $ for different 2HDM+S models for benchmark $ \tan\beta $ values: Type I ($ \tan\beta $ independent; upper left), Type II ($ \tan\beta = $ 5; upper right), Type III ($ \tan\beta = $ 2; lower left) and Type IV ($ \tan\beta = $ 0.5; lower right).

png pdf
Figure 10-a:
The observed and expected upper limits at 95% CLs on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ m_{\mathrm{a}_1} $ for different 2HDM+S models for benchmark $ \tan\beta $ values: Type I ($ \tan\beta $ independent; upper left), Type II ($ \tan\beta = $ 5; upper right), Type III ($ \tan\beta = $ 2; lower left) and Type IV ($ \tan\beta = $ 0.5; lower right).

png pdf
Figure 10-b:
The observed and expected upper limits at 95% CLs on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ m_{\mathrm{a}_1} $ for different 2HDM+S models for benchmark $ \tan\beta $ values: Type I ($ \tan\beta $ independent; upper left), Type II ($ \tan\beta = $ 5; upper right), Type III ($ \tan\beta = $ 2; lower left) and Type IV ($ \tan\beta = $ 0.5; lower right).

png pdf
Figure 10-c:
The observed and expected upper limits at 95% CLs on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ m_{\mathrm{a}_1} $ for different 2HDM+S models for benchmark $ \tan\beta $ values: Type I ($ \tan\beta $ independent; upper left), Type II ($ \tan\beta = $ 5; upper right), Type III ($ \tan\beta = $ 2; lower left) and Type IV ($ \tan\beta = $ 0.5; lower right).

png pdf
Figure 10-d:
The observed and expected upper limits at 95% CLs on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ m_{\mathrm{a}_1} $ for different 2HDM+S models for benchmark $ \tan\beta $ values: Type I ($ \tan\beta $ independent; upper left), Type II ($ \tan\beta = $ 5; upper right), Type III ($ \tan\beta = $ 2; lower left) and Type IV ($ \tan\beta = $ 0.5; lower right).

png pdf
Figure 11:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type II 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 11-a:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type II 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 11-b:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type II 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 11-c:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type II 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 11-d:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type II 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 12:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type III 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 12-a:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type III 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 12-b:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type III 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 12-c:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type III 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).

png pdf
Figure 12-d:
The observed and expected 95% CL upper limits on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $, as a function of $ \tan\beta $ for the Type III 2HDM+S model for: $ m_{\mathrm{a}_1} $= 5 GeV (upper left), $ m_{\mathrm{a}_1} $= 8 GeV (upper right), $ m_{\mathrm{a}_1} $= 12 GeV (lower left) and $ m_{\mathrm{a}_1} $= 15 GeV (lower right).
Tables

png pdf
Table 1:
Types of tracks considered in the analysis, with their selection criteria and purposes.

png pdf
Table 2:
The signal acceptance and the number of expected signal events after selection in the SR. The acceptance is calculated relative to the total H production cross section, using values predicted by the SM. The number of expected signal events is computed for a benchmark value of the branching fraction $ {\mathcal{B}}(\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) {\mathcal{B}}^{2} (\mathrm{a}_1 \to \tau \tau)= $ 0.05, assuming SM-predicted cross sections. The quoted uncertainties for the predictions from simulation include only statistical uncertainties.

png pdf
Table 3:
Control regions used to construct and validate the background model. The symbols $ N_\text{iso} $ and $ N_\text{sig} $ denote the number of ``isolation'' and ``signal'', respectively, within a cone of $ \Delta R= $ 0.5 around the muon momentum direction. In cases where $ N_\text{sig} $ is not mentioned, there is no explicit requirement on the number of ``signal'' tracks. The last row defines the SR.
Summary
A search for light pseudoscalar bosons ($ \mathrm{a}_1 $) produced in decays of the 125 GeV Higgs boson (H) in final states with four taus or two muons and two taus is presented. The search is performed using data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC between 2016 and 2018 and corresponding to an integrated luminosity of 138 fb$ ^{-1} $. Pseudoscalar bosons with masses ($ m_{\mathrm{a}_1} $) in the range of 4 to 15 GeV are examined. The analysis is based on inclusive H boson production and targets the $ \mathrm{H}\to \mathrm{a}_1 \mathrm{a}_1 \to 4\tau/2\mu 2\tau $ decay channels. Both channels are used in combination to constrain the product of the inclusive signal production cross section and the branching fraction into the 4$ \tau $ final state, $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) \mathcal{B}^2(\mathrm{a}_1 \to \tau\tau) $. This is done by exploiting the linear dependence of the fermionic coupling strength of $ \mathrm{a}_1 $ on the fermion mass. No significant excess in data over the expected standard model (SM) background is observed. Hence, upper limits on the product of the inclusive signal cross section and the branching fraction, $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) \mathcal{B}^2(\mathrm{a}_1 \to \tau\tau) $, relative to the SM H production cross section, $ \sigma_\text{SM} $, are set at 95% confidence level. The observed limits range from 0.007 at $ m_{\mathrm{a}_1}= $ 11 GeV to 0.079 at $ m_{\mathrm{a}_1}= $ 4 GeV. The expected limits range from 0.011 at $ m_{\mathrm{a}_1}= $ 11 GeV to 0.066 at $ m_{\mathrm{a}_1}= $ 4 GeV. The results indicate significant improvement compared to the earlier similar CMS analysis at 13 TeV, exceeding the anticipated improvement resulting from the larger data sample alone. Sensitivity is enhanced by 2 to 4 times depending on the mass hypothesis, which can be attributed to the introduction of a veto for b tagged jets and the tightening of the impact parameters of the ``isolation`` tracks, both of which play a crucial role in background reduction. The results are also reinterpreted in the context of various types of 2HDM+S models. The tightest constraints on $ \sigma (\mathrm{p}\mathrm{p} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1 \mathrm{a}_1) $, relative to $ \sigma_\text{SM} $ are provided for Type III 2HDM+S. For this scenario, regions of the phase space with $ \tan\beta \geq $ 2 are excluded for most $ m_{\mathrm{a}_1} $. For the Type II 2HDM+S model, stringent limits are observed for mass values between 4 and 9 GeV when $ \tan\beta > $ 1, indicating strong exclusion capabilities within this mass range. \pagebreak
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 P. Fayet Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino NPB 90 (1975) 104
5 P. Fayet Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions PLB 69 (1977) 489
6 U. Ellwanger, C. Hugonie, and A. M. Teixeira The next-to-minimal supersymmetric standard model Phys. Rept. 496 (2010) 1 0910.1785
7 M. Maniatis The next-to-minimal supersymmetric extension of the standard model reviewed Int. J. Mod. Phys. A 25 (2010) 3505 0906.0777
8 T. D. Lee A theory of spontaneous T violation PRD 8 (1973) 1226
9 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models Phys. Rept. 516 (2012) 1 1106.0034
10 D. Curtin et al. Exotic decays of the 125 GeV Higgs boson PRD 90 (2014) 075004 1312.4992
11 N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson The littlest Higgs JHEP 07 (2002) 034 hep-ph/0206021
12 M. Schmaltz and D. Tucker-Smith Little Higgs review Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 hep-ph/0502182
13 S. Baum, M. Carena, N. R. Shah, and C. E. M. Wagner Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM JHEP 04 (2018) 069 1712.09873
14 T. Alanne, K. Kainulainen, K. Tuominen, and V. Vaskonen Baryogenesis in the two doublet and inert singlet extension of the standard model JCAP 08 (2016) 057 1607.03303
15 J. E. Kim and H. P. Nilles The mu Problem and the Strong CP Problem PLB 138 (1984) 150
16 S. Ramos-Sanchez The mu-problem, the NMSSM and string theory Fortsch. Phys. 58 (2010) 748 1003.1307
17 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
18 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
19 ATLAS Collaboration Search for new light gauge bosons in Higgs boson decays to four-lepton final states in $ pp $ collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector at the LHC PRD 92 (2015) 092001 1505.07645
20 CMS Collaboration Search for a Non-Standard-Model Higgs Boson Decaying to a Pair of New Light Bosons in Four-Muon Final States PLB 726 (2013) 564 CMS-EXO-12-012
1210.7619
21 CMS Collaboration A search for pair production of new light bosons decaying into muons PLB 752 (2016) 146 CMS-HIG-13-010
1506.00424
22 CMS Collaboration Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $ \sqrt{s}= $ 8 TeV JHEP 10 (2017) 076 CMS-HIG-16-015
1701.02032
23 CMS Collaboration Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $ \tau $ leptons in pp collisions at $ \sqrt{s}= $ 8 TeV JHEP 01 (2016) 079 CMS-HIG-14-019
1510.06534
24 ATLAS Collaboration Search for new phenomena in events with at least three photons collected in $ pp $ collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector EPJC 76 (2016) 210 1509.05051
25 ATLAS Collaboration Search for Higgs boson decays to beyond-the-standard-model light bosons in four-lepton events with the ATLAS detector at $ \sqrt{s}= $ 13 TeV JHEP 06 (2018) 166 1802.03388
26 CMS Collaboration A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV PLB 796 (2019) 131 CMS-HIG-18-003
1812.00380
27 ATLAS Collaboration Search for Higgs bosons decaying to $ aa $ in the $ \mu\mu\tau\tau $ final state in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS experiment PRD 92 (2015) 052002 1505.01609
28 CMS Collaboration Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $ \tau $ leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2018) 018 CMS-HIG-17-029
1805.04865
29 CMS Collaboration Search for a light pseudoscalar Higgs boson in the boosted $ \mu\mu\tau\tau $ final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 08 (2020) 139 CMS-HIG-18-024
2005.08694
30 ATLAS Collaboration Search for Higgs boson decays into a pair of light bosons in the $ bb\mu\mu $ final state in pp collision at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 790 (2019) 1 1807.00539
31 CMS Collaboration Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $ \mu\mu $bb and $ \tau\tau $bb final states EPJC 84 (2024) 493 CMS-HIG-22-007
2402.13358
32 ATLAS Collaboration Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the $ \gamma\gamma jj $ final state in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PLB 782 (2018) 750 1803.11145
33 CMS Collaboration Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $ \sqrt{s}= $ 13 TeV PLB 800 (2020) 135087 CMS-HIG-18-006
1907.07235
34 CMS Collaboration Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $ \sqrt{\textrm{s}} = $ 13 TeV JHEP 06 (2024) 097 CMS-HIG-18-026
2403.10341
35 CMS Collaboration Search for the exotic decay of the Higgs boson into two light pseudoscalars with four photons in the final state in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 07 (2023) 148 CMS-HIG-21-003
2208.01469
36 CMS Collaboration Search for exotic Higgs boson decays $ H \to \mathcal{A}\mathcal{A} \to 4\gamma $ with events containing two merged diphotons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 131 (2023) 101801 CMS-HIG-21-016
2209.06197
37 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
38 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064
39 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
40 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
41 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
42 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
43 G. Bozzi, S. Catani, D. de Florian, and M. Grazzini Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC NPB 737 (2006) 73 hep-ph/0508068
44 D. de Florian, G. Ferrera, M. Grazzini, and D. Tommasini Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC JHEP 11 (2011) 064 1109.2109
45 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
46 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
47 P. Nason A New method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
48 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with Parton Shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
49 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
50 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
51 GEANT4 Collaboration GEANT4--a simulation toolkit NIM A 506 (2003) 250
52 J. Allison et al. Geant4 developments and applications IEEE Trans. Nucl. Sci. 53 (2006) 270
53 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
54 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
55 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
56 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
57 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
58 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
59 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
60 E. Bols et al. Jet Flavour Classification Using DeepJet JINST 15 (2020) P12012 2008.10519
61 CMS Collaboration Performance summary of AK4 jet b tagging with data from proton-proton collisions at 13 TeV with the CMS detector CMS Detector Performance Summary CMS-DP-2023-005, 2023
CDS
62 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
63 D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector LHC Higgs Cross Section Working Group Collaboration, 10, 2016
link
64 M. Lisanti and J. G. Wacker Discovering the Higgs boson with low mass muon pairs PRD 79 (2010) 115006 0903.1377
65 R. J. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
66 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
67 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
68 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
69 CMS Collaboration Measurement of the inclusive $ W $ and $ Z $ production cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 10 (2011) 132 CMS-EWK-10-005
1107.4789
70 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
71 J. Pumplin et al. New generation of parton distributions with uncertainties from global QCD analysis JHEP 07 (2002) 012 hep-ph/0201195
72 CMS Collaboration The CMS statistical analysis and combination tool: Combine Submitted to Comput. Softw. Big Sci, 2024 CMS-CAT-23-001
2404.06614
73 W. Verkerke and D. P. Kirkby The RooFit toolkit for data modeling eConf C0303241 MOLT007, 2003 physics/0306116
74 L. Moneta et al. The RooStats Project PoS ACAT 057, 2010
link
1009.1003
75 U. Haisch, J. F. Kamenik, A. Malinauskas, and M. Spira Collider constraints on light pseudoscalars JHEP 03 (2018) 178 1802.02156
76 M. Baumgart and A. Katz Implications of a new light scalar near the bottomonium regime JHEP 08 (2012) 133 1204.6032
Compact Muon Solenoid
LHC, CERN