CMS

1.0 < \(p_T^{\text{ref}} < 3.0 \) GeV/c

<table>
<thead>
<tr>
<th>Centrality</th>
<th>(p_T) (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>5-10%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>10-15%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>15-20%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>20-25%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>25-30%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>30-35%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>35-40%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>40-50%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>50-60%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
<tr>
<td>60-70%</td>
<td>1.0 < (p_T) < 3.0 GeV/c</td>
</tr>
</tbody>
</table>

\(\Delta \eta \{2, | \} \)

\(v_2(\Delta |n| > 2) \)

\(p_T \) (GeV/c)

\(\eta \)

XeXe \(\sqrt{s_{NN}} = 5.44 \) TeV

PbPb \(\sqrt{s_{NN}} = 5.02 \) TeV

\(< 3.0 \) GeV/c

ref