CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-16-030 ; CERN-EP-2018-121
Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at $\sqrt{s} = $ 8 TeV
JHEP 11 (2018) 115
Abstract: A search for charged Higgs boson decaying to a charm and a bottom quark (${{\mathrm{H}^+} \to\mathrm{c}\mathrm{\bar{b}}} $) is performed using 19.7 fb$^{-1}$ of pp collision data at $\sqrt{s} = $ 8 TeV. The production mechanism investigated in this search is $\mathrm{t\bar{t}}$ pair production in which one top quark decays to a charged Higgs boson and a bottom quark and the other decays to a charged lepton, a neutrino, and a bottom quark. Charged Higgs boson decays to ${\mathrm{c}\mathrm{\bar{b}}} $ are searched for, resulting in a final state containing at least four jets, a charged lepton (muon or electron), and missing transverse momentum. A kinematic fit is performed to identify the pair of jets least likely to be the bottom quarks originating from direct top quark decays and the invariant mass of this pair is used as the final observable in the search. No evidence for the presence of a charged Higgs boson is observed and upper limits at 95% confidence level of 0.8-0.5% are set on the branching fraction ${\mathcal{B}} ({\mathrm{t}\to{\mathrm{H}^+} \mathrm{b}} )$, assuming ${\mathcal{B}} ({{\mathrm{H}^+} \to\mathrm{c}\mathrm{\bar{b}}} ) = $ 1.0 and ${\mathcal{B}} ({\mathrm{t}\to{\mathrm{H}^+} \mathrm{b}} ) + {\mathcal{B}} ({\mathrm{t} \to \mathrm{W} \mathrm{b}} ) = $ 1.0, for the charged Higgs boson mass range 90-150 GeV.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams of the $ {{\mathrm {H}} ^+} $ production in top quark pair events (left) compared to the standard model production of $ {{\mathrm {t}\overline {\mathrm {t}}}} $ in lepton+jets final states (right).

png pdf
Figure 1-a:
Feynman diagram of the $ {{\mathrm {H}} ^+} $ production in top quark pair events.

png pdf
Figure 1-b:
Feynman diagram of the standard model production of $ {{\mathrm {t}\overline {\mathrm {t}}}} $ in lepton+jets final states.

png pdf
Figure 2:
Post-fit with a null-$ {{\mathrm {H}} ^+} $ hypothesis on the expected dijet mass distributions from SM backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the $ {{\mu}}$+jets (left column) and e+jets (right column) channels. In the first row, events are shown for two b tags together with the fit procedure for a $ {{\mathrm {H}} ^+} $ signal ($ {M_{{{\mathrm {H}} ^+}}} = $ 110 GeV in left and 140 GeV in right). The second (third) row shows the results for events with at least three b tags in the fit procedure for the $ {{\mathrm {H}} ^+} $ search with $ {M_{{{\mathrm {H}} ^+}}} = $ 90-120 (130-150) GeV. The dijet distributions are compared with the $ {{\mathrm {H}} ^+} $ signal shape (dashed line) for $ {M_{{{\mathrm {H}} ^+}}} = $ 110 and 140 GeV.

png pdf
Figure 2-a:
Post-fit with a null-$ {{\mathrm {H}} ^+} $ hypothesis on the expected dijet mass distributions from SM backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the $ {{\mu}}$+jets channel. Events are shown for two b tags together with the fit procedure for a $ {{\mathrm {H}} ^+} $ signal ($ {M_{{{\mathrm {H}} ^+}}} = $ 110 GeV).

png pdf
Figure 2-b:
Post-fit with a null-$ {{\mathrm {H}} ^+} $ hypothesis on the expected dijet mass distributions from SM backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the e+jets channel. Events are shown for two b tags together with the fit procedure for a $ {{\mathrm {H}} ^+} $ signal ($ {M_{{{\mathrm {H}} ^+}}} = $ 140 GeV).

png pdf
Figure 2-c:
Post-fit with a null-$ {{\mathrm {H}} ^+} $ hypothesis on the expected dijet mass distributions from SM backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the $ {{\mu}}$+jets channel. The plots shows the results for events with at least three b tags in the fit procedure for the $ {{\mathrm {H}} ^+} $ search with $ {M_{{{\mathrm {H}} ^+}}} = $ 90-120 GeV. The dijet distributions are compared with the $ {{\mathrm {H}} ^+} $ signal shape (dashed line) for $ {M_{{{\mathrm {H}} ^+}}} = $ 110 GeV.

png pdf
Figure 2-d:
Post-fit with a null-$ {{\mathrm {H}} ^+} $ hypothesis on the expected dijet mass distributions from SM backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the e+jets channel. The plots shows the results for events with at least three b tags in the fit procedure for the $ {{\mathrm {H}} ^+} $ search with $ {M_{{{\mathrm {H}} ^+}}} = $ 90-120 GeV. The dijet distributions are compared with the $ {{\mathrm {H}} ^+} $ signal shape (dashed line) for $ {M_{{{\mathrm {H}} ^+}}} = $ 110 GeV.

png pdf
Figure 2-e:
Post-fit with a null-$ {{\mathrm {H}} ^+} $ hypothesis on the expected dijet mass distributions from SM backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the $ {{\mu}}$+jets channel. The plots shows the results for events with at least three b tags in the fit procedure for the $ {{\mathrm {H}} ^+} $ search with $ {M_{{{\mathrm {H}} ^+}}} = $ 130-150 GeV. The dijet distributions are compared with the $ {{\mathrm {H}} ^+} $ signal shape (dashed line) for $ {M_{{{\mathrm {H}} ^+}}} = $ 140 GeV.

png pdf
Figure 2-f:
Post-fit with a null-$ {{\mathrm {H}} ^+} $ hypothesis on the expected dijet mass distributions from SM backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the e+jets channel. The plots shows the results for events with at least three b tags in the fit procedure for the $ {{\mathrm {H}} ^+} $ search with $ {M_{{{\mathrm {H}} ^+}}} = $ 130-150 GeV. The dijet distributions are compared with the $ {{\mathrm {H}} ^+} $ signal shape (dashed line) for $ {M_{{{\mathrm {H}} ^+}}} = $ 140 GeV.

png pdf
Figure 3:
Upper limits at the 95% confidence level (CL) on the branching fraction $ {\mathcal {B}} ({{\mathrm {t}} \to {{\mathrm {H}} ^+} {\mathrm {b}}})$, assuming $ {\mathcal {B}} ({{{\mathrm {H}} ^+} \to {\mathrm {c}} {\overline {\mathrm {b}}}}) = $ 1.0 and $ {\mathcal {B}} ({{\mathrm {t}} \to {{\mathrm {H}} ^+} {\mathrm {b}}}) + {\mathcal {B}} ({{\mathrm {t}} \to {\mathrm {W}} {\mathrm {b}}}) = $ 1.0, for the combined $ {{\mu}}$+jets and e+jets channels. The black solid line shows the observed limit. The mean expected limit is shown as a blue dashed line and the green/yellow bands indicate the 68/95% confidence intervals for the expected limits. The red dotted line shows the mean expected limit in the absence of systematic uncertainties.
Tables

png pdf
Table 1:
Observed event yields and estimated backgrounds for the $ {{\mu}}$+jets and e+jets channels satisfying the event selection criteria. The number of b-tagged jets is the number of b tags among the four jets with highest $ {p_{\mathrm {T}}} $ in the event. The first and second uncertainty shown corresponds to the statistical and systematic components, respectively.

png pdf
Table 2:
Summary of the relative systematic uncertainties in the event yields for the $ {{\mathrm {H}} ^+} $ signal ($ {M_{{{\mathrm {H}} ^+}}} = $ 120 GeV), simulated SM backgrounds (separated into $ {{\mathrm {t}\overline {\mathrm {t}}}} $ and non-$ {{\mathrm {t}\overline {\mathrm {t}}}} $ components), and the data-driven multijet events. The uncertainties apply to both $ {{\mu}}$+jets and e+jets events, and in the case where the uncertainties in the two channels differ, a range is given. Uncertainties on the shape of templates are marked with an asterisk.
Summary
A search for charged Higgs boson decaying to a charm and a bottom quark (${{\mathrm{H}^+} \to\mathrm{c}\mathrm{\bar{b}}} $) is performed for the first time. The search uses $\mathrm{t\bar{t}}$ events with a final state containing at least four jets, a charged lepton (muon or electron), and missing transverse momentum. The search is based on the analysis of proton-proton collision data recorded at $\sqrt{s} = $ 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. A kinematic fit is performed to identify the pair of jets least likely to be the $\mathrm{b}$ quarks originating from direct top quark decays and the invariant mass of this pair is used as the final observable in the search. No evidence for the presence of a charged Higgs boson is observed and upper limits at 95% confidence level of 0.8-0.5% are set on the branching fraction ${\mathcal{B}} ({\mathrm{t}\to{\mathrm{H}^+} \mathrm{b}} )$, assuming ${\mathcal{B}} ({{\mathrm{H}^+} \to\mathrm{c}\mathrm{\bar{b}}} ) = 1.0$ and ${\mathcal{B}} ({\mathrm{t}\to{\mathrm{H}^+} \mathrm{b}} ) + {\mathcal{B}} ({\mathrm{t} \to \mathrm{W} \mathrm{b}} ) = $ 1.0, for the charged Higgs boson mass range 90-150 GeV.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at $ \sqrt{s} = $ 7 and 8 TeV EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
5 ATLAS and CMS Collaborations Combined measurement of the Higgs boson mass in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV with the ATLAS and CMS Experiments PRL 114 (2015) 191803 1503.07589
6 ATLAS Collaboration Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at $ \sqrt{s} = $ 7 and 8 TeV in the ATLAS experiment EPJC 76 (2016) 6 1507.04548
7 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
8 S. L. Glashow Partial-symmetries of weak interactions NP 22 (1961) 579
9 S. Weinberg A model of leptons PRL 19 (1967) 1264
10 A. Salam Weak and electromagnetic interactions in Elementary particle theory, N. Svartholm, ed., p. 367 Almquist \& Wiksell
11 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
12 P. W. Higgs Broken symmetries, massless particles and gauge fields PL12 (1964) 132
13 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
14 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
15 P. W. Higgs Spontaneous symmetry breakdown without massless bosons PR145 (1966) 1156
16 T. W. B. Kibble Symmetry breaking in nonAbelian gauge theories PR155 (1967) 1554
17 H. Goldberg Constraint on the photino mass from cosmology PRL 50 (1983) 1419, .[Erratum: \DOI10.1103/PhysRevLett.103.099905]
18 J. R. Ellis et al. Supersymmetric relics from the big bang NPB 238 (1984) 453
19 Particle Data Group, M. Tanabashi et al. The review of particle physics PRD 98 (2018) 030001
20 Super-Kamiokande Collaboration Evidence for oscillation of atmospheric neutrinos PRL 81 (1998) 1562 hep-ex/9807003
21 J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson The Higgs Hunter's Guide volume 80 of Frontiers in Physics Perseus Books
22 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models PR 516 (2012) 1 1106.0034
23 E. A. Paschos Diagonal neutral currents PRD 15 (1977) 1966
24 S. L. Glashow and S. Weinberg Natural conservation laws for neutral currents PRD 15 (1977) 1958
25 W. Altmannshofer et al. Uncovering mass generation through Higgs flavor violation PRD 93 (2016) 031301 1507.07927
26 W. Altmannshofer et al. Collider signatures of flavorful Higgs bosons PRD 94 (2016) 115032 1610.02398
27 ALEPH, DELPHI, L3, OPAL Collaborations, the LEP working group for Higgs boson searches Collaboration Search for charged Higgs bosons: combined results using LEP data EPJC 73 (2013) 2463 1301.6065
28 CDF Collaboration Search for charged Higgs bosons from top quark decays in $ \mathrm{p\bar{p}} $ collisions at $ \sqrt{s} = $ 1.96 TeV PRL 96 (2006) 042003 hep-ex/0510065
29 D0 Collaboration Search for charged Higgs bosons in decays of top quarks PRD 80 (2009) 051107 0906.5326
30 CDF Collaboration Study of top-quark production and decays involving a tau lepton at CDF and limits on a charged-Higgs boson contribution PRD 89 (2014) 091101 1402.6728
31 CMS Collaboration Search for a light charged Higgs boson in top quark decays in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 07 (2012) 143 CMS-HIG-11-019
1205.5736
32 ATLAS Collaboration Search for charged Higgs bosons decaying via $ {\mathrm{H^{\pm}}} \rightarrow \tau^{\pm}\nu $ in fully hadronic final states using pp collision data at $ \sqrt{s} = $ 8 TeV with the ATLAS detector JHEP 03 (2015) 088 1412.6663
33 ATLAS Collaboration Search for charged Higgs bosons decaying via $ \mathrm{H^{+}} \to \tau \nu $ in top quark pair events using pp collision data at $ \sqrt{s}= $ 7 TeV with the ATLAS detector JHEP 06 (2012) 039 1204.2760
34 CDF Collaboration Search for charged Higgs bosons in decays of top quarks in $ \mathrm{p\bar{p}} $ collisions at $ \sqrt{s} = $ 1.96 TeV PRL 103 (2009) 101803 0907.1269
35 D0 Collaboration Search for charged Higgs bosons in top quark decays PLB 682 (2009) 278 0908.1811
36 ATLAS Collaboration Search for a light charged Higgs boson in the decay channel $ \mathrm{H^+ \to c\bar{s}} $ in $ \mathrm{t\bar{t}} $ events using pp collisions at $ \sqrt{s} = $ 7 TeV with the ATLAS detector EPJC 73 (2013) 2465 1302.3694
37 CMS Collaboration Search for a light charged Higgs boson decaying to $ \mathrm{c}\overline{\mathrm{s}} $ in pp collisions at $ \sqrt{s}= $ 8 TeV JHEP 12 (2015) 178 CMS-HIG-13-035
1510.04252
38 CDF Collaboration Search for a very light CP-odd Higgs boson in top quark decays from $ \mathrm{p\bar{p}} $ collisions at 1.96 TeV PRL 107 (2011) 031801 1104.5701
39 M. Aoki, S. Kanemura, K. Tsumura, and K. Yagyu Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology PRD 80 (2009) 015017 0902.4665
40 H. E. Logan and D. MacLennan Charged Higgs phenomenology in the flipped two Higgs doublet model PRD 81 (2010) 075016 1002.4916
41 A. G. Akeroyd, S. Moretti, and J. Hernandez-Sanchez Light charged Higgs bosons decaying to charm and bottom quarks in models with two or more Higgs doublets PRD 85 (2012) 115002 1203.5769
42 Y. Grossman Phenomenology of models with more than two Higgs doublets NPB 426 (1994) 355 hep-ph/9401311
43 A. G. Akeroyd and W. J. Stirling Light charged Higgs scalars at high-energy $ \mathrm{e^{+}e^{-}} $ colliders NPB 447 (1995) 3
44 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
45 J. Pumplin et al. New generation of parton distributions with uncertainties from global QCD analysis JHEP 07 (2002) 012 hep-ph/0201195
46 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross-section at hadron colliders CPC 185 (2014) 2930 1112.5675
47 S. Alekhin et al. The PDF4LHC Working Group Interim Report 1101.0536
48 M. Botje et al. The pdf4lhc working group interim recommendations 1101.0538
49 A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt Uncertainties on $ {\alpha_S} $ in global PDF analyses and implications for predicted hadronic cross sections EPJC 64 (2009) 653 0905.3531
50 J. Gao et al. CT10 next-to-next-to-leading order global analysis of QCD PRD 89 (2014) 033009 1302.6246
51 R. D. Ball et al. Parton distributions with LHC data NPB 867 (2013) 244 1207.1303
52 CMS Collaboration Measurement of the differential cross section for top quark pair production in pp collisions at $ \sqrt{s} = $ 8 TeV EPJC 75 (2015) 542 CMS-TOP-12-028
1505.04480
53 Y. Li and F. Petriello Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code PRD 86 (2012) 094034 1208.5967
54 R. Gavin, Y. Li, F. Petriello, and S. Quackenbush W physics at the LHC with $ FEWZ $ 2.1 CPC 184 (2013) 208 1201.5896
55 J. M. Campbell and R. K. Ellis $ \mathrm{t \bar{t} W^{\pm}} $ production and decay at NLO JHEP 07 (2012) 052 1204.5678
56 M. V. Garzelli, A. Kardos, C. G. Papadopoulos, and Z. Trocsanyi $ \mathrm{t \bar{t} W^{\pm}} $ and $ \mathrm{t \bar{t} Z} $ hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects JHEP 11 (2012) 056 1208.2665
57 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the $ POWHEG $ BOX JHEP 06 (2010) 043 1002.2581
58 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
59 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the $ POWHEG $ method JHEP 11 (2007) 070 0709.2092
60 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in $ POWHEG $: $ s $- and $ t $-channel contributions JHEP 09 (2009) 111 0907.4076
61 M. Aliev et al. HATHOR -- HAdronic Top and Heavy quarks crOss section calculatoR CPC 182 (2011) 1034 1007.1327
62 P. Kant et al. HATHOR for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions CPC 191 (2015) 74 1406.4403
63 T. Sjostrand, S. Mrenna, and P. Z. Skands PYTHIA 6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
64 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
65 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties CERN (2013) 1307.1347
66 S. Agostinelli et al. GEANT4---a simulation toolkit NIMA 506 (2003) 250
67 CMS Collaboration Study of the underlying event at forward rapidity in pp collisions at $ \sqrt{s} = $ 0.9, 2.76, and 7 TeV JHEP 04 (2013) 072 CMS-FWD-11-003
1302.2394
68 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
69 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
70 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
71 CMS Collaboration Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $ \sqrt{s} = $ 7 TeV JINST 8 (2013) P09009 CMS-EGM-11-001
1306.2016
72 CMS Collaboration Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $ sqrt(s) = $ 8 TeV JINST 10 (2015) P08010 CMS-EGM-14-001
1502.02702
73 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
74 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ {k_{\mathrm{T}}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
75 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
76 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
77 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) P11002 CMS-JME-10-011
1107.4277
78 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
79 CMS Collaboration Identification of b-quark jets with the CMS experiment JINST 8 (2013) P04013 CMS-BTV-12-001
1211.4462
80 CMS Collaboration Measurement of the cross section ratio $ \sigma_\mathrm{t \bar{t} b \bar{b}} / \sigma_\mathrm{t \bar{t} jj} $ in pp collisions at $ \sqrt{s} = $ 8 TeV PLB 746 (2015) 132 CMS-TOP-13-010
1411.5621
81 CDF Collaboration Top quark mass measurement using the template method in the lepton+jets channel at CDF II PRD 73 (2006) 032003 hep-ex/0510048
82 CMS Collaboration Measurement of the top quark mass using proton-proton data at $ \sqrt{s} = $ 7 and 8 TeV PRD 93 (2016) 072004 CMS-TOP-14-022
1509.04044
83 CMS Collaboration CMS luminosity based on pixel cluster counting - summer 2013 update CMS-PAS-LUM-13-001 CMS-PAS-LUM-13-001
84 L. Moneta et al. The RooStats project in Proceedings, 13th International Workshop on Advanced computing and analysis techniques in physics research (ACAT2010), p. 057 Jaipur, India, February, 2010 PoS (ACAT 2010) 057 1009.1003
85 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
86 A. L. Read Presentation of search results: The CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
87 The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 CMS-NOTE-2011-005
88 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN