The interpretation of the observed limits in a Type II 2HDM is performed in the “physics basis”. The inputs to this interpretation are the physical Higgs boson masses (m_h, m_H, m_A, m_{H^\pm}), the ratio of the vacuum expectation energies ($\tan\beta$), the CP-even Higgs mixing angle (α) and $m_{12}^2 = m_A^2 \left[\frac{\tan\beta}{\tan\beta + \tan\beta} \right]$. We assume that $m_H = m_A = m_{H^\pm}$.

The cross-sections and branching fractions in the 2HDM were calculated as described by the LHC Higgs Cross Section Working Group [72]. The exclusion regions, calculated using the combination of the $H \to hh \to bb\tau\tau$ and $A \to Zh \to \ell\ell\tau\tau$ analyses, in the $\cos(\beta - \alpha)$ vs. $\tan\beta$ plane for such a Type II 2HDM scenario with a heavy Higgs boson mass of 300 GeV are shown in Fig. 12. This can be compared to Fig. 5 in Ref. [38].

8 Summary

A search for a heavy scalar Higgs boson (H) decaying into a pair of SM-like Higgs bosons (hh) and a search for a heavy neutral pseudoscalar Higgs boson (A) decaying into a Z boson and a SM-like Higgs boson (h), have been performed using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 19.7 fb$^{-1}$, recorded at 8 TeV centre–of–mass energy in 2012. No evidence for a signal has been found and exclusion limits on the production cross section times branching fraction for the processes $H \to hh \to bb\tau\tau$ and $A \to Zh \to \ell\ell\tau\tau$ are presented. The results are also interpreted in the context of the MSSM and 2HDM models.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid