<table>
<thead>
<tr>
<th>Decay tag and production tag</th>
<th>Expected signal composition</th>
<th>σ_{mH}/m_{H}</th>
<th>No. of categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → $\gamma\gamma$ [18], Section 2.1</td>
<td>Untagged</td>
<td>76–93% ggH</td>
<td>5.1</td>
</tr>
<tr>
<td>2-jet VBF</td>
<td>50–80% VBF</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Leptonic VH</td>
<td>\approx95% VH (WH/ZH \approx 5)</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss} VH</td>
<td>70–80% VH (WH/ZH \approx 1)</td>
<td>1.3%</td>
<td>3</td>
</tr>
<tr>
<td>2-jet VH</td>
<td>\approx65% VH (WH/ZH \approx 5)</td>
<td>1.0–1.3%</td>
<td>3</td>
</tr>
<tr>
<td>Leptonic ttH</td>
<td>\approx95% ttH</td>
<td>1.1%</td>
<td>1</td>
</tr>
<tr>
<td>Multijet ttH</td>
<td>$>$90% ttH</td>
<td>1.1%</td>
<td>1</td>
</tr>
<tr>
<td>H → ZZ → 4ℓ [16], Section 2.2</td>
<td>Untagged</td>
<td>\approx90% ggH</td>
<td>5.1</td>
</tr>
<tr>
<td>2-jet</td>
<td>42% (VBF + VH)</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>H → WW → ℓνν [22], Section 2.3</td>
<td>0-jet</td>
<td>96–98% ggH</td>
<td>4.9</td>
</tr>
<tr>
<td>1-jet</td>
<td>82–84% ggH</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>2-jet VBF</td>
<td>78–86% VBF</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>2-jet VH</td>
<td>31–40% VH</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>3ℓν (WH)</td>
<td>SF-SS, SF-OS</td>
<td>\approx100% WH, up to 20% $\tau\tau$</td>
<td>4.9</td>
</tr>
<tr>
<td>$\ell^+\ell^-\nu\nu$ (ZH)</td>
<td>eee, eeμ, μμμ, μμμ</td>
<td>\approx100% ZH</td>
<td>4.9</td>
</tr>
<tr>
<td>H → ττ [23], Section 2.4</td>
<td>0-jet</td>
<td>\approx98% ggH</td>
<td>4.9</td>
</tr>
<tr>
<td>1-jet</td>
<td>70–80% ggH</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>2-jet VBF</td>
<td>75–83% VBF</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>2-jet VH</td>
<td>67–70% VH</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>3ℓν (WH)</td>
<td>SF-SS, SF-OS</td>
<td>\approx100% WH, up to 20% $\tau\tau$</td>
<td>4.9</td>
</tr>
<tr>
<td>$\ell^+\ell^-\nu\nu$ (ZH)</td>
<td>eee, eeμ, μμμ, μμμ</td>
<td>\approx100% ZH</td>
<td>4.9</td>
</tr>
<tr>
<td>VH production with H → bb [21], Section 2.5</td>
<td>0-jet</td>
<td>\approx98% ggH, 23–30% WW</td>
<td>5.1</td>
</tr>
<tr>
<td>1-jet</td>
<td>70–80% ggH, 31–38% WW</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>2-jet VBF</td>
<td>75–83% VBF, 37–45% WW</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>2-jet VH</td>
<td>67–70% VH, 9–15% WW</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>ttH production with H → hadrons or H → leptons [29], Section 2.6</td>
<td>0-jet</td>
<td>\approx90% bb but \approx24% WW in $\geq6j + 2b$</td>
<td>5.0</td>
</tr>
<tr>
<td>1-jet</td>
<td>45–85% bb, 35–35% WW, 4–14% $\tau\tau$</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>H → invisible [28], Section 2.7</td>
<td>0-jet</td>
<td>\approx90% bb but \approx24% WW in $\geq6j + 2b$</td>
<td>4.9</td>
</tr>
<tr>
<td>1-jet</td>
<td>\approx100% ZH</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>H → μμ [30], Section 2.8</td>
<td>Untagged</td>
<td>88–99% ggH</td>
<td>5.0</td>
</tr>
<tr>
<td>2-jet VBF</td>
<td>\approx80% VBF</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>2-jet boosted</td>
<td>\approx50% ggH, \approx50% VBF</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>2-jet other</td>
<td>\approx68% ggH, \approx17% VH, \approx15% VBF</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

1 Events fulfilling the requirements of either selection are combined into one category.

1 Values for analyses dedicated to the measurement of the mass that do not use the same categories and/or observables.

* Composition in the regions for which the ratio of signal and background $s/(a + b)$ > 0.05.