CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-BPH-17-008 ; CERN-EP-2018-134
Observation of the $ \chi_{\mathrm{b}1}(\mathrm{3P}) $ and $ \chi_{\mathrm{b}2}(\mathrm{3P}) $ and measurement of their masses
Phys. Rev. Lett. 121 (2018) 092002
Abstract: The $ \chi_{\mathrm{b}1}(\mathrm{3P}) $ and $ \chi_{\mathrm{b}2}(\mathrm{3P}) $ states are observed through their $ \Upsilon(\mathrm{3S}) \gamma$ decays, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 80.0 fb$^{-1}$. The $ \Upsilon(\mathrm{3S}) $ mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to $ \mathrm{ e^+e^- } $ pairs in the silicon tracker, leading to a $ \chi_{\mathrm{b}}(\mathrm{3P}) $ mass resolution of 2.2 MeV. This is the first time that the $J = $ 1 and 2 states are well resolved and their masses individually measured: 10 513.42 $\pm$ 0.41 (stat) $\pm$ 0.18 (syst) MeV and 10 524.02 $\pm$ 0.57 (stat) $\pm$ 0.18 (syst) MeV; they are determined with respect to the world-average value of the $ \Upsilon(\mathrm{3S}) $ mass, which has an uncertainty of 0.5 MeV. The mass splitting is measured to be 10.60 $\pm$ 0.64 (stat) $\pm$ 0.17 (syst) MeV.
Figures Summary References CMS Publications
Figures

png pdf
Figure 1:
The dimuon invariant mass distribution, in two equidistant $ | y |$ ranges. The midrapidity dimuons have a significantly better mass resolution.

png pdf
Figure 2:
The PES as a function of the measured photon energy, obtained using $ {\chi _{{{\mathrm {c}}}1}}\to {\mathrm {J}/\psi} \, \gamma $ decays from the 2015-2016 (open circles) and 2017 (filled circles) data samples. The points are drawn at the average $E_{\gamma}$ in each bin. The curve represents the parametrization mentioned in the text.

png pdf
Figure 3:
The invariant mass distributions of the $ {\chi _{{{\mathrm {b}}}J}}\to {\Upsilon} \mathrm {(nS)} \, \gamma $ candidates ($ \mathrm {n} =$ 1, 2, 3), after the PES correction. The inset shows the ${\chi _\mathrm {\mathrm{b}1}\mathrm {(1P)}}$ and ${\chi _\mathrm {\mathrm{b}1}\mathrm {(2P)}}$ masses fitted before (open squares) and after (filled circles) the PES correction, with vertical bars representing the statistical uncertainties. The world-average values [33] are shown by the horizontal bands, with dashed lines representing their total uncertainties.

png pdf
Figure 4:
The invariant mass distribution of the $ {\chi _{{{\mathrm {b}}}J} \mathrm {(3P)}}\to {\Upsilon \mathrm {(3S)}}\, \gamma $ candidates. The vertical bars are the statistical uncertainties. The curves represent the fitted contributions of the two signal peaks, the background, and their sum.
Summary
In summary, data samples of pp collisions at $\sqrt{s} = $ 13 TeV,collected by CMS in the years 2015-2017, corresponding to an integrated luminosity of 80.0 fb$^{-1}$, were used to measure the invariant mass distribution of the $\chi_{\mathrm{b}}(\mathrm{3P}) \to \Upsilon(\mathrm{3S}) \gamma $ candidates, with the $ \Upsilon(\mathrm{3S}) $ mesons detected in the dimuon decay channel and the photons reconstructed through conversions to $ \mathrm{ e^+e^- } $ pairs. The measured distribution is well reproduced by the superposition of the $ \chi_{\mathrm{b}1}(\mathrm{3P}) $ and $ \chi_{\mathrm{b}2}(\mathrm{3P}) $ quarkonium states, overlaid on a smooth continuum. This is the first time that the two states are individually observed. Their mass difference is $\Delta M = $ 10.60 $\pm$ 0.64 (stat) $\pm$ 0.17 (syst) MeV, and their masses, assuming that the $J = $ 1 state is the lighter one, are $M(\chi_{\mathrm{b}1}(\mathrm{3P})) = $ 10 513.42 $\pm$ 0.41 (stat) $\pm$ 0.18 (syst) and $M(\chi_{\mathrm{b}2}(\mathrm{3P})) = $ 10 524.02 $\pm$ 0.57 (stat) $\pm$ 0.18 (syst) MeV, having an additional 0.5 MeV uncertainty reflecting the present precision of the world-average $ \Upsilon(\mathrm{3S}) $ mass. This measurement fills a gap in the spin-dependent bottomonium spectrum below the open-beauty threshold and should significantly contribute to an improved understanding of the nonperturbative spin-orbit interactions affecting quarkonium spectroscopy.
References
1 Quarkonium Working Group Collaboration, N. Brambilla et al. Heavy Quarkonium Physics CERN Yellow Reports: Monographs. CERN, Geneva
2 N. Brambilla et al. Heavy quarkonium: progress, puzzles, and opportunities EPJC 71 (2011) 1534 1010.5827
3 N. Brambilla et al. QCD and strongly coupled gauge theories: Challenges and perspectives EPJC 74 (2014) 2981 1404.3723
4 G. C. Nayak, J.-W. Qiu, and G. F. Sterman Fragmentation, factorization and infrared poles in heavy quarkonium production PLB 613 (2005) 45 hep-ph/0501235
5 G. Nayak, J.-W. Qiu, and G. Sterman Fragmentation, NRQCD and NNLO factorization analysis in heavy quarkonium production PRD 72 (2005) 114012 hep-ph/0509021
6 G. C. Nayak, J.-W. Qiu, and G. F. Sterman NRQCD factorization and velocity-dependence of NNLO poles in heavy quarkonium production PRD 74 (2006) 074007 hep-ph/0608066
7 N. Brambilla, A. Pineda, J. Soto, and A. Vairo Potential NRQCD: An effective theory for heavy quarkonium NPB 566 (2000) 275 hep-ph/9907240
8 N. Brambilla, A. Pineda, J. Soto, and A. Vairo The QCD potential at O(1/m) PRD 63 (2000) 014023 hep-ph/0002250
9 N. Brambilla, A. Pineda, J. Soto, and A. Vairo Effective field theories for heavy quarkonium Rev. Mod. Phys. 77 (2005) 1423 hep-ph/0410047
10 G. Bodwin, E. Braaten, and P. Lepage Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium PRD 51 (1995) 1125 hep-ph/9407339
11 G. Bodwin et al. Fragmentation contributions to hadroproduction of prompt $ \mathrm{J}/\psi, \chi_{{\mathrm{c}}J} $, and $ \psi $(2S) states PRD 93 (2016) 034041 1509.07904
12 P. Faccioli et al. Quarkonium production at the LHC: A data-driven analysis of remarkably simple experimental patterns PLB 773 (2017) 476 1702.04208
13 P. Faccioli et al. From identical S- and P-wave $ {p_{\mathrm{T}}} $ spectra to maximally distinct polarizations: Probing NRQCD with $ \chi $ states EPJC 78 (2018) 268 1802.01106
14 P. Faccioli, C. Louren\cco, M. Ara\'ujo, and J. Seixas Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production EPJC 78 (2018) 118 1802.01102
15 ATLAS Collaboration Observation of a new $ \chi_{\mathrm{b}} $ state in radiative transitions to $ \Upsilon\text{1S} $ and $ \Upsilon\text{2S} $ at ATLAS PRL 108 (2012) 152001 1112.5154
16 D0 Collaboration Observation of a narrow mass state decaying into $ \Upsilon\text{1S}\ + \gamma $ in $ {\mathrm{p}}\overline{{\mathrm{p}}} $ collisions at $ \sqrt{s} = $ 1.96 TeV PRD 86 (2012) 031103 1203.6034
17 LHCb Collaboration Study of $ \chi_{\mathrm{b}}\ $ meson production in pp collisions at $ \sqrt{s}= $ 7 and 8 TeV and observation of the decay $ \chi_{\mathrm{b}}(\text{3P}) \to \Upsilon\text{3S} \gamma $ EPJC 74 (2014) 3092 1407.7734
18 LHCb Collaboration Measurement of the $ \chi_{\mathrm{b}}(\text{3P})\ $ mass and of the relative rate of $ \chi_{\mathrm{b}1}(\text{1P}) $ and $ \chi_{\mathrm{b}2}(\text{1P}) $ production JHEP 10 (2014) 088 1409.1408
19 Belle Collaboration Observation of a narrow charmonium-like state in exclusive $ \mathrm{B}^{\pm} \to \mathrm{K}^{\pm} \pi^+ \pi^- \mathrm{J}/\psi $ decays PRL 91 (2003) 262001 hep-ex/0309032
20 M. Karliner, J. L. Rosner, and T. Skwarnicki Multiquark states 1711.10626
21 A. Esposito, A. Pilloni, and A. D. Polosa Multiquark resonances PR 668 (2016) 1 1611.07920
22 S. L. Olsen A new hadron spectroscopy Front. Phys. 10 (2015) 121 1411.7738
23 E. J. Eichten, K. Lane, and C. Quigg New states above charm threshold PRD 73 (2006) 014014 hep-ph/0511179
24 E. J. Eichten, K. Lane, and C. Quigg Charmonium levels near threshold and the narrow state $ \mathrm{X}Belle \to \pi^{+}\pi^{-} \mathrm{J}/\psi $ PRD 69 (2004) 094019 hep-ph/0401210
25 M. Karliner and J. L. Rosner $ \mathrm{X}(3872)$, $\mathrm{X}_{\mathrm{b}}, $ and the $ \chi_{\mathrm{b}1}(\text{3P}) $ state PRD 91 (2015) 014014 1410.7729
26 CMS Collaboration CMS luminosity measurement for the 2015 data-taking period CMS-PAS-LUM-15-001 CMS-PAS-LUM-15-001
27 CMS Collaboration CMS luminosity measurements for the 2016 data taking period CMS-PAS-LUM-17-001 CMS-PAS-LUM-17-001
28 CMS Collaboration CMS luminosity measurements for the 2017 data taking period CMS-PAS-LUM-17-004
29 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
30 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
31 CMS Collaboration Measurement of the relative prompt production rate of $ \chi_{\mathrm{c}2} $ and $ \chi_{\mathrm{c}1} $ in pp collisions at $ \sqrt{s}= $ 7 TeV EPJC 72 (2012) 2251 CMS-BPH-11-010
1210.0875
32 CMS Collaboration Measurement of the production cross section ratio $ \sigma(\chi_{\mathrm{b}2}(\text{1P})) / \sigma(\chi_{\mathrm{b}2}(\text{1P})) $ in pp collisions at $ \sqrt{s} = $ 8 TeV PLB 743 (2015) 383 CMS-BPH-13-005
1409.5761
33 Particle Data Group, C. Patrignani et al. Review of particle physics CPC 40 (2016) 100001
34 M. J. Oreglia A study of the reactions $\psi' \to \gamma\gamma \psi$ PhD thesis, Stanford University, 1980 SLAC Report SLAC-R-236, see Appendix D
35 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
36 D. J. Lange The EVTGEN particle decay simulation package NIMA 462 (2001) 152
37 E. Barberio and Z. W\cas PHOTOS: A universal Monte Carlo for QED radiative corrections. Version 2.0 CPC 79 (1994) 291
38 GEANT4 Collaboration GEANT4--a simulation toolkit NIMA 506 (2003) 250
39 B.-Q. Li and K.-T. Chao Bottomonium spectrum with screened potential Commun. Theor. Phys. 52 (2009) 653 0909.1369
40 C. O. Dib and N. A. Neill $ \chi_{\mathrm{b}}(\text{3P})\ $ splitting predictions in potential models PRD 86 (2012) 094011 1208.2186
41 J.-F. Liu and G.-J. Ding Bottomonium spectrum with coupled-channel effects EPJC 72 (2012) 1981 1105.0855
42 Bhaghyesh and K. B. Vijaya Kumar Properties of bottomonium in a semi-relativistic model CPC 37 (2013) 023103
43 W.-Z. Tian, L. Cao, Y.-C. Yang, and H. Chen Bottomonium states versus recent experimental observations in the QCD-inspired potential model CPC 37 (2013) 083101 1308.0960
44 W. W. Repko, M. D. Santia, and S. F. Radford Three-loop static QCD potential in heavy quarkonia NP A 924 (2014) 65 1211.6373
45 J. Ferretti, G. Galat\`a, and E. Santopinto Quark structure of the $ \mathrm{X}Belle\ $ and $ \chi_{\mathrm{b}}(\text{3P})\ $ resonances PRD 90 (2014) 054010 1401.4431
46 J. Ferretti and E. Santopinto Higher mass bottomonia PRD 90 (2014) 094022 1306.2874
47 S. Godfrey and K. Moats Bottomonium mesons and strategies for their observation PRD 92 (2015) 054034 1507.00024
48 J. Segovia, P. G. Ortega, D. R. Entem, and F. Fern\'andez Bottomonium spectrum revisited PRD 93 (2016) 074027 1601.05093
49 Y. Lu, M. N. Anwar, and B.-S. Zou Coupled-channel effects for the bottomonium with realistic wave functions PRD 94 (2016) 034021 1606.06927
50 W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong Spectrum and electromagnetic transitions of bottomonium PRD 95 (2017) 074002 1607.04696
Compact Muon Solenoid
LHC, CERN